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Results Overview

• Object Detection/Tracking from Video

a) with "provided" data: 2nd place ( by mAP: 54.5% )

b) with  "external" data: 2nd place ( by mAP: 55.0% )

• Objection Detection from Video 

a) with "provided" data: 2nd place ( by mAP: 75.8% )

b) with  "external" data: 2nd place ( by mAP: 76.0% )
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Video Context Modeling

A selected-average-pooling method
is proposed for modeling video-level
context.
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A selected-average-pooling method
is proposed for modeling video-level
context.
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mean AP: 0.951



Video Object Detection

A larger-keep(LK) strategy is proposed
to re-score proposal confidence scores
using video context.

Method mAP

Still Image Det 79.4

+Context(MCS[1]) 80.6

+Context(ours w/o LK) 80.8

+Context(ours w/ LK) 83.1

… … … … … …

[1] K Kang et al. T-CNN: Tubelets with Convolutional Neural Networks for Object Detection from Videos. arXiv preprint 2016



Video Object Detection

A larger-keep(LK) strategy is proposed
to re-score proposal confidence scores
using video context.

Method mAP

Still Image Det 79.4

+Context(MCS[1]) 80.6

+Context(ours w/o LK) 80.8

+Context(ours w/ LK) 83.1

Ensemble 4 models 
achieves 84.5%

… … … … … …

[1] K Kang et al. T-CNN: Tubelets with Convolutional Neural Networks for Object Detection from Videos. arXiv preprint 2016



Tubelet Generation 

Video Object Tracking

Tubelet Fusion

Comparison of Tracking Results 

[1] K Kang et al. T-CNN: Tubelets with Convolutional Neural Networks for Object Detection from Videos. arXiv preprint 2016



Visualization

Still Image Detection

Still Image Detection + Video Context

cattle horse sheep bike cattle train bird car cattle sheep dog horse cattle dog

cattle cattle cattle cattle
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ObjectNet: Rank of Experts

1

ILSVRC2017 DET results

Team
Categories

won
Mean AP

BDAT 85 73.13%

DeepView
(ETRI)

10 59.30%

NUS_Qihoo_DPNs 9 65.69%

KAISTNIA_ETRI 1 61.02%

S. H. Bae Y. J. Jo J. W. Hwang Y. W. Lee Y. S. Yoon Y. S. Bae J. Y. Park
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• Difficult to train a dominant model for all classes

 Each model has different performance for classes

• mAP is an indirect metric to select models for ensemble

 High mAP does not ensure superiority on class-wise performance

FRCNN win DSSD win
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• Pursue Meta-Architecture Diversity
 Utilizing multiple feature extractor & meta-architecture pairs

• Enhance Small Object Detection
 Utilizing hyper feature maps   

 Multi-scale test: 400, 600, 800, 900

 Mini-batch sampling: considering all ROI proposals (area > 0)

• Solve Data Imbalance Problem
 Data balance: setting the positive & negative sample ratio to be equal

 Data augmentation: generating augmented images for minority classes 

Feature Extractor Meta-Architecture

Residual Network (101,152,269) Faster RCNN

WR-Inception SSD

VGG DSSD
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mean AP using our ensemble on val2The number of selected models 

using our raking method 

• Rank of Experts : Ranking & Selection
 Ranking models by class-wise performance → Combining results class-wise

 Improving mean AP about 4~5% on val2 evaluation 

 Improving mean AP about 1% on the test set, but increasing number of 

object categories won
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Qualitative evaluation results using our ensemble model

ResNet-FRCN with different image resolutions mean AP improvement 
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Core Idea
p We trained some existing networks with

a novel learning method. 
(Temp. name: TZ learning)
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l A simple and powerful learning method

for sound recognition. (Under review)

Coming soon!

p We trained some existing networks with
a novel learning method. 
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Core Idea

TZ learning (ours):
l A simple and powerful learning method

for sound recognition. (Under review)
l It can boost the performance of various 

models without changing other settings.

Coming soon!

p We trained some existing networks with
a novel learning method. 
(Temp. name: TZ learning)

Preprocessing, Data augmentation, optimizer, etc.

…
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CIFAR-10
11-layer ConvNet ResNet-110

Standard learning
TZ learning (ours)

ResNeXt-29
(2×64d)

Model Standard TZ (ours)
11-layer 
ConvNet 7.20 6.06

(1.14% gain)

ResNet-110 5.69 5.24
(0.45% gain)

ResNeXt-29
(2×64d) 4.31 3.58

(0.73% gain)
Error rate % (avg. of 5 trials)
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p Final top-5 error on test: 3.205% (5th place)
p We are currently conducting further experiments.
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Statistical Inference and Information Theory Laboratory

Deep Pyramidal Residual Networks

• Deep residual networks (ResNet) [1] have shown a remarkable 
performance in image recognition.

• According to [2], ResNet can be viewed like ensembles of relatively 
shallow networks.

[1] K. He et al., “Deep Residual Learning for Image Recognition”, CVPR 2016.
[2] A. Veit et al., “Residual Networks Behave Like Ensembles of Relatively Shallow Networks”, 

NIPS 2016.



Statistical Inference and Information Theory Laboratory

Deep Pyramidal Residual Networks

• Deep residual networks (ResNet) [1] have shown a remarkable 
performance in image recognition.

• According to [2], ResNet can be viewed like ensembles of relatively 
shallow networks.
– Exp: deleting individual layers from networks at test time.
– Deleting a layer with increasing feature dimensions leads to degrade performance, 

which is shown with a error fluctuation:

D



Statistical Inference and Information Theory Laboratory

Deep Pyramidal Residual Networks

• Deep residual networks (ResNet) [1] have shown a remarkable 
performance in image recognition.

• According to [2], ResNet can be viewed like ensembles of relatively 
shallow networks.
– Exp: deleting individual layers from networks at test time.
– Deleting a layer with increasing feature dimensions leads to degrade performance 

shown with a error fluctuation.
• We conjectured that increasing the feature dimension gradually, instead 

of sharply increasing only at some blocks can
– diminish the error fluctuation phenomenon and
– increase ResNet’s ensembling effect. 



Statistical Inference and Information Theory Laboratory

Deep Pyramidal Residual Networks

• Schematic illustrations of ResNet, Wide ResNet and PyramidNet.
• Each  block denotes conv stacks (units) with feature map dimension.
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Statistical Inference and Information Theory Laboratory

Deep Pyramidal Residual Networks

(a) Pre-activation ResNet (b) PyramidNet

• Experimental results of dropping a single layer at test time:

PyramidNet
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Statistical Inference and Information Theory Laboratory

Please come to our poster for more details!

Thank you!



KAISTNIA_ETRI

KAISTNIA_ETRI

Aggregating multi-level/shape features and 
confidence penalty for object detection

Keun Dong Lee, Seungjae Lee, Jong Gook Ko

Jaehyung Kim, Jun Hyun Nam, Jinwoo Shin



KAISTNIA_ETRI

• Width and Depth
• Train various depths (101/152/269) and widths for 

multi-region networks.

• Some classes has better results in the shallower network 
(e.g. orange, burrito) and in the wider network (e.g. baby 
bed, violin and ladybug).

• Multi-level Features

• Train model with weighted addition fusion of different 
layer feature maps

• Upper level feature map has more weight  value

• It is effective for recognizing small size objects such as 
wine bottle, puck, band aid and remote control, etc

• Multi-shape Features
• Train model with various shape of surrounding regions 

for context pooling

• Informativeness of surrounding regions is varying according 
to the directions (noise or context)

• AP gain in 90 classes such as balance beam, neck brace, 
volleyball

Improving Detection Networks beyond GBD Network [Xingyu et al. 2017]
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KAISTNIA_ETRI

• Iterative Region Proposals
• Cascaded RPN: Train a baseline model to generate 

ROIs and take an ensemble of two models trained 
independently.  

• Iterative box refinement: Use predicted boxes 
generated by a trained detection network as new 
ROIs together with previous input ROIs.

• Confidence Penalty
• Detection network often fails because of high 

scored background or unlabeled objects. 

• To resolve this issue, we added negative entropy 
to the original loss function to regularize highly 
confident background output.

• Experimental Results
• Apply aggregating multi-level/shape features and 

confidence penalty  

• Commonly used techniques such as global context, 
box averaging and different ensemble rules

Other Techniques and Experimental Results
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