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Histogram of top 5 hit-rate
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Odometer, hodometer,
mileometer, milometer

Geyser, 95.3%

Monarch, monarch butterfly,
milkweed butterfly, Danaus
plexippus, 98.0%

Bonsai, 96.0%

Snowplow, snowplough
95.3%
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Where we are in imageNet challenge

Cliff dwelling, 97.3%

Trolleybus, trolley coach,
trackless trolley, 96.0%

star anise, Chinese anise,
Illicium verum, 94.0%

Our classification cost: 0.282 (top 5 hit rate, 71.8%, classification rate 52.9%)

Best performance of other teams: 0.336



System overview

[ Dense grid descriptor: }
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Make good use of
low level descriptors



Outline

¢ Fast descriptor coding

" Local coordinate coding (LCC)
K. Yu et.al, NIPS2009; J. Wang et. al, CVPR 2010

¢ Large-scale SVM classification

" Averaged stochastic gradient descent



What is local coordinate coding (LCC)

X(d x N) B(d x D)

Assume B is given.

Z(D x N)

Sparse coding:

z* = argming 3[x — Bz|? + A}, [z

LCC: K. Yu et. al, NIPS 2009

* = argmin, 3x — Bz||> + A", [lx — bi|?|]

/'

Explicitly enforcing locality constraint



Why LCC
-- from functional approximation point of view
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e.g. nonlinear separating hyperplane
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Coding error Locality term

€ Good approximation: 1) local to the test point x
2) small reconstruction error



Local coordinate coding -- fast implementation
J. Wang et. al, CVPR 2009

Step 1: be local to the test pointx Step 2: small reconstruction
-- givenx, find its KNNs. error -- solve LMS fitting using only
the KNNs
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€ Approximated solutions, but significant speedup

For a regular image (7k patches), with D=8192:
sparse coding needs ~10mins, (approximate) LCC needs only ~2s



Parallel computing

® For LCC, D = 8, 192, each image takes ~2 seconds
2s x 1,200,000 ~ 28 days

Not counting file I/0, networking delay, etc

@® In our submission, D = 16, 384

which would have taken more than 56 days

© With Hadoop map-reduce (about ~100 mappers),
this was finished within one day.




System overview

Each image is represented by a long vector
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[ Linear SVM }




Our training sets

Coding | Descriptor | Coding Feature Data set
scheme dimension dimension | Size(GB)

1 Local HOG+LBP 8,192 81,920 167*

2 coordinate |5 16,384 10 163,840 187*
coding

3 HOG+LBP 20,480 10 204,800 260*

4 Super- HOG 32,768 8 262,144 1374

5 vector  HoG+LBP 51,200 4 204,800 1073
coding

6 HOG 65,536 4 262,144 1374

*In sparse format

€ Very high dimensional features, huge data sets
€ LCC features have smaller size -- they are sparse



How monster is the resulting feature sets

Compare to PASCAL classification task:

- # of training data m (assumed) training time

PASCAL 10,103 1 hour
ImageNet 1,200,000 1000 6000 hours = 250 days*
Ratio 120 50 6000

* Not including file I/O, networking delay, etc

@) Life is short -- we need efficient SVM training algorithms



SVM using averaged stochastic gradient descent
(ASGD)

One-against-all SVM classifier:

L= Zle L(w,x¢, 1) = Zle 2lwl|? + max [0, 1 — ye (W' x; + b)]

Stochastic update:

w=w — UVL(W Xtayt)

=(1-1/t)yw 1 +wt/t

B. Polyak and A. Juditsky, 1992

© Memory efficient: only need to load data one-by-one

© Easy to parallelize: distribute the training of 1000 binary
classifiers to different machines

© Fast convergence: heed only a small number of epochs...



Fast convergence of ASGD
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© Significant speed-up by averaging:
5 epochs already give fairly good results.
© ASGD: has similar convergence properties as Stochastic Newton

methods when appropriate stepsize is chosen

© Training time: LCC features, ~ 2days (using two 8-core machines)
Super-vector features, ~ 7 days (using three 8-core machines)



Conclusion

What'’s the key:

1) learning: local coordinate coding and supervector coding + linear SVM
2) being able to handle large-scale data

Best single method: ~65%

Combined the 6 sets of features: 71.8%

Long way to go:
Our method performs poorly on some categories...



Long way to go ...

China tree, false logwood, logwood shingle oak, red beech, brown Kentucky coffee
dogwood, 14.0% tree, 20.0% laurel oak, 23.3% oak, 25.3% tree, 26.7%

alder, alder tree, teak, Tectona iron tree, grass pink, Calopogon
29.3% grandis, 29.3% 30.0% pulchellum, 31.3%
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= Better features: Hierarchical coding, discriminative coding
" More data
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