
ImageNet classification: fast descriptor
coding and large-scale SVM training

Yuanqing Lin, Fengjun Lv, Shenghuo Zhu,

Ming Yang, Timothee Cour, Kai Yu

LiangLiang Cao, Zhen Li, Min-Hsuan Tsai,

Xi Zhou, Thomas Huang

Tong Zhang

Where we are in imageNet challenge

Best performance of other teams: 0.336

Our classification cost: 0.282 (top 5 hit rate, 71.8%, classification rate 52.9%)

Odometer, hodometer,
mileometer, milometer

99.3%

Monarch, monarch butterfly,
milkweed butterfly, Danaus
plexippus, 98.0%

Cliff dwelling, 97.3%

lunar crater, 96.7% Bonsai, 96.0%
Trolleybus, trolley coach,
trackless trolley, 96.0%

Geyser, 95.3%
Snowplow, snowplough

95.3%
star anise, Chinese anise,

Illicium verum, 94.0%

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

140

Accuracy

Histogram of top 5 hit-rate

System overview

Dense grid descriptor:
HOG, LBP

Coding: local coordinate,
super-vector

Linear SVM

Pooling, SPM

Fairly
standard

Make good use of
low level descriptors

How to train SVM efficiently

Outline

 Fast descriptor coding

 Large-scale SVM classification

 Local coordinate coding (LCC)

 Averaged stochastic gradient descent

 super-vector coding
K. Yu et.al, NIPS2009; J. Wang et. al, CVPR 2010

X. Zhou et.al, ECCV2010

What is local coordinate coding (LCC)

X(d£N)

¼ £
B(d£D)

Z(D£N)

LCC:

z¤ = argminz
1
2
kx¡Bzk2 + ¸

PD

i=1 kx¡ bik2jzij

Explicitly enforcing locality constraint

K. Yu et. al, NIPS 2009

Sparse coding:

z¤ = argminz
1
2
kx¡Bzk2 + ¸

PD

i=1 jzij

Assume is given.B

Why LCC
-- from functional approximation point of view

f(x) ¼
PD

i=1 zi(x)wi

e.g. nonlinear separating hyperplane

 Good approximation: 1) local to the test point x
2) small reconstruction error

· ®kx¡Bz(x)k+ ¯
PD

i=1 kx¡bik2jzi(x)j

Coding error
Locality term

Functional approximation errorjf(x)¡
PD

i=1 zi(x)f(bi)j

Local coordinate coding -- fast implementation

 Approximated solutions, but significant speedup

For a regular image (7k patches), with D=8192:
sparse coding needs ~10mins, (approximate) LCC needs only ~2s

x

bi1

bi2

bi3

bi5

bi4
bi1

bi2

bi3

bi4

bi5

Step 2: small reconstruction
error -- solve LMS fitting using only

the KNNs

J. Wang et. al, CVPR 2009

Step 1: be local to the test point
-- given , find its KNNs.x

x

Parallel computing

2s£ 1;200;000 ¼ 28 days

Not counting file I/O, networking delay, etc

 For LCC, , each image takes ~2 secondsD = 8; 192

 In our submission, D = 16;384

which would have taken more than 56 days

 With Hadoop map-reduce (about ~100 mappers),
this was finished within one day.

System overview

Dense grid descriptor: SIFT, LBP

Coding: local coordinate, SV

Linear SVM

Pooling, SPMEach image is represented by a long vector

Our training sets

Sets Coding
scheme

Descriptor Coding
dimension

SPM Feature
dimension

Data set
Size(GB)

1 Local
coordinate

coding

HOG+LBP 8,192 10 81,920 167*

2 HOG 16,384 10 163,840 187*

3 HOG+LBP 20,480 10 204,800 260*

4 Super-
vector
coding

HOG 32,768 8 262,144 1374

5 HOG+LBP 51,200 4 204,800 1073

6 HOG 65,536 4 262,144 1374

*In sparse format

 Very high dimensional features, huge data sets

 LCC features have smaller size -- they are sparse

How monster is the resulting feature sets

Compare to PASCAL classification task:

of training data # of class

PASCAL 10,103 20

ImageNet 1,200,000 1000

Ratio 120 50

(assumed) training time

1 hour

6000 hours = 250 days*

6000

* Not including file I/O, networking delay, etc

 Life is short -- we need efficient SVM training algorithms

SVM using averaged stochastic gradient descent
(ASGD)

wt =wt¡1¡ ´rL(w;xt; yt)
¹wt = (1¡ 1=t) ¹wt¡1+wt=t

L=
PT

t=1L(w;xt; yt) =
PT

t=1
¸
2
kwk2 +max

£
0;1¡ yt(w

Txt + b)
¤

One-against-all SVM classifier:

Stochastic update:

☺Memory efficient: only need to load data one-by-one

☺Fast convergence: need only a small number of epochs…

☺Easy to parallelize: distribute the training of 1000 binary

classifiers to different machines

B. Polyak and A. Juditsky, 1992

Fast convergence of ASGD

1 2 3 4 5
40

45

50

55

60

65

70

Epochs

T
o
p
 5

 h
it
 r

a
te

 (
%

)

SGD

Averaging SGD

☺Significant speed-up by averaging:

5 epochs already give fairly good results.

☺Training time: LCC features, ~ 2days (using two 8-core machines)

Super-vector features, ~ 7 days (using three 8-core machines)

☺ASGD: has similar convergence properties as Stochastic Newton

methods when appropriate stepsize is chosen

Conclusion

What’s the key:
1) learning: local coordinate coding and supervector coding + linear SVM
2) being able to handle large-scale data

Best single method: ~65%
Combined the 6 sets of features: 71.8%

Long way to go:
Our method performs poorly on some categories…

Long way to go …

China tree, false
dogwood, 14.0%

logwood, logwood
tree, 20.0%

shingle oak,
laurel oak, 23.3%

 Better features: Hierarchical coding, discriminative coding

More data

red beech, brown
oak, 25.3%

Kentucky coffee
tree, 26.7%

cap opener, 26.7%
alder, alder tree,
29.3%

teak, Tectona
grandis, 29.3%

iron tree,
30.0%

grass pink, Calopogon
pulchellum, 31.3%

Thank you

