ImageNet classification: fast descriptor
coding and large-scale SVM training

~Yuanging Lin, Fengjun Lv, Shenghuo Zhu,
NEQC cmeovered by innovaton Ming Yang, Timothee Cour, Kai Yu

J§ILLINOIS LiangLiang Cao, Zhen Li, Min-Hsuan Tsal,
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN XI ZhOU, Thomas Huang

RUTGERS

Tong Zhang

140¢

120

100

80

60

40

20

Histogram of top 5 hit-rate

0.2 0.4 0.6 0.8 1
Accuracy

Odometer, hodometer,
mileometer, milometer

Geyser, 95.3%

Monarch, monarch butterfly,
milkweed butterfly, Danaus
plexippus, 98.0%

Bonsai, 96.0%

Snowplow, snowplough
95.3%

R

Where we are in imageNet challenge

Cliff dwelling, 97.3%

Trolleybus, trolley coach,
trackless trolley, 96.0%

star anise, Chinese anise,
Illicium verum, 94.0%

Our classification cost: 0.282 (top 5 hit rate, 71.8%, classification rate 52.9%)

Best performance of other teams: 0.336

System overview

[Dense grid descriptor: }

HOG, LBP

|
| | ¢«—
standard \:[super-vector }:

Make good use of
low level descriptors

Outline

¢ Fast descriptor coding

" Local coordinate coding (LCC)
K. Yu et.al, NIPS2009; J. Wang et. al, CVPR 2010

¢ Large-scale SVM classification

" Averaged stochastic gradient descent

What is local coordinate coding (LCC)

X(d x N) B(d x D)

Assume B is given.

Z(D x N)

Sparse coding:

z* = argming 3[x — Bz|? + A}, [z

LCC: K. Yu et. al, NIPS 2009

* = argmin, 3x — Bz||> + A", [lx — bi|?|]

/'

Explicitly enforcing locality constraint

Why LCC
-- from functional approximation point of view

D
| /f7(x) ~ Y i Zi(X)w;
e.g. nonlinear separating hyperplane

‘f(X) — ZzDzl 24 (X)f(bz)k— Functional approximation error

D
< ozH\X - BZ(X)’H + 52\}:1 Ix — biHQ!zz-(X%\
v v

Coding error Locality term

€ Good approximation: 1) local to the test point x
2) small reconstruction error

Local coordinate coding -- fast implementation
J. Wang et. al, CVPR 2009

Step 1: be local to the test pointx Step 2: small reconstruction
-- givenx, find its KNNs. error -- solve LMS fitting using only
the KNNs

b;.

Db,

b;

3

b;

2

€ Approximated solutions, but significant speedup

For a regular image (7k patches), with D=8192:
sparse coding needs ~10mins, (approximate) LCC needs only ~2s

Parallel computing

® For LCC, D = 8, 192, each image takes ~2 seconds
2s x 1,200,000 ~ 28 days

Not counting file I/0, networking delay, etc

@® In our submission, D = 16, 384

which would have taken more than 56 days

© With Hadoop map-reduce (about ~100 mappers),
this was finished within one day.

System overview

Each image is represented by a long vector

4

[Linear SVM }

Our training sets

Coding | Descriptor | Coding Feature Data set
scheme dimension dimension | Size(GB)

1 Local HOG+LBP 8,192 81,920 167*

2 coordinate |5 16,384 10 163,840 187*
coding

3 HOG+LBP 20,480 10 204,800 260*

4 Super- HOG 32,768 8 262,144 1374

5 vector HoG+LBP 51,200 4 204,800 1073
coding

6 HOG 65,536 4 262,144 1374

*In sparse format

€ Very high dimensional features, huge data sets
€ LCC features have smaller size -- they are sparse

How monster is the resulting feature sets

Compare to PASCAL classification task:

- # of training data m (assumed) training time

PASCAL 10,103 1 hour
ImageNet 1,200,000 1000 6000 hours = 250 days*
Ratio 120 50 6000

* Not including file I/O, networking delay, etc

@) Life is short -- we need efficient SVM training algorithms

SVM using averaged stochastic gradient descent
(ASGD)

One-against-all SVM classifier:

L= Zle L(w,x¢, 1) = Zle 2lwl|? + max [0, 1 — ye (W' x; + b)]

Stochastic update:

w=w — UVL(W Xtayt)

=(1-1/t)yw 1 +wt/t

B. Polyak and A. Juditsky, 1992

© Memory efficient: only need to load data one-by-one

© Easy to parallelize: distribute the training of 1000 binary
classifiers to different machines

© Fast convergence: heed only a small number of epochs...

Fast convergence of ASGD

70¢

65~ R g---—————--- £
BT
603"
S
2
T
= L 0
=S JP—
s ! _--
2 e
- ieg
50 - -7
/”0’
. --©-- SGD
45+ // ==BEF- Aweraging SGD ||
o’
40°

© Significant speed-up by averaging:
5 epochs already give fairly good results.
© ASGD: has similar convergence properties as Stochastic Newton

methods when appropriate stepsize is chosen

© Training time: LCC features, ~ 2days (using two 8-core machines)
Super-vector features, ~ 7 days (using three 8-core machines)

Conclusion

What'’s the key:

1) learning: local coordinate coding and supervector coding + linear SVM
2) being able to handle large-scale data

Best single method: ~65%

Combined the 6 sets of features: 71.8%

Long way to go:
Our method performs poorly on some categories...

Long way to go ...

China tree, false logwood, logwood shingle oak, red beech, brown Kentucky coffee
dogwood, 14.0% tree, 20.0% laurel oak, 23.3% oak, 25.3% tree, 26.7%

alder, alder tree, teak, Tectona iron tree, grass pink, Calopogon
29.3% grandis, 29.3% 30.0% pulchellum, 31.3%

R :

: $REY <
X TR R ki
a3

= Better features: Hierarchical coding, discriminative coding
" More data

”Wojwﬁmmmmmx mllnmzig Wi
‘ :/@§m ﬂl&lﬂﬂl S

Ei {.ttpmwv@@eqwmosllemnn rﬂl" i ﬁﬂ&l o
L. el vER L0 _ /=4=TJmen:igad L[|

