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Our Approach 

• Combine classification and detection in a cascade  

– class-specific bbox proposals 

– advanced features for proposal scoring 

• Training in two stages: 

1. independent training 
• image classifiers 

• object detectors 

2. combination 
• object-level classifiers (bbox proposal scoring) 

• scores fusion 
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Image-Level Classification 

Conventional approach: Fisher vector + linear SVM [1] 

• Dense patch features 

– root-SIFT [2] & color statistics 

– augmentation with patch location (x,y) [3] 

• Fisher vector (1024 Gaussians) => 135K-dim 

• Compression using product quantization 

• One-vs-rest linear SVM 

– early fusion: stacked root-SIFT FV and color FV (270K-dim) 

– Pegasos SGD 

[1] Sanchez, Perronnin: "High-dimensional signature compression for large-scale image classification", CVPR 2011 

[2] Arandjelovic, Zisserman: "Three things everyone should know to improve object retrieval ", CVPR 2012 

[3] Sanchez et al.: "Modeling the Spatial Layout of Images Beyond Spatial Pyramids", PRL 2012 



Classification: Comparison 

Submission Method Error rate 

SuperVision DBN 0.16422 

ISI FV: SIFT, LBP, GIST, CSIFT 0.26172 

XRCE/INRIA 
FV: SIFT and colour 

1M-dim features 
0.27058 

OXFORD_VGG 

FV: SIFT and colour 
270K-dim features 
(classification only,  

no fusion) 

0.27302 

1.1% 

• Saturation of FV-based approaches  

• Adding more off-the-shelf features or increasing 
dimensionality does not help much 

9.8% 
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Detection: DPMs 

Discriminatively trained part based models [1] 
• 3 components (aspects) 

• no parts (root filters only) 

 

[1] Felzenszwalb et al.: "Object Detection with Discriminatively Trained Part Based Models", PAMI 2010 



Semi-Supervised Learning 

• Ground-truth bboxes available for only ~42% training images 

• Training set augmentation: 
1. train detectors on ground-truth bboxes 

2. get more positives by detection on the rest of the training set 

top-scored training set detections:  
red – detected bbox; green – ground-truth bbox (if available) 



SSL: Performance Improvements 

• for 329 classes AP is improved (+2.4% on average) 

• for the rest of the classes – training on ground-truth only  
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Quality of DPMs 
Evaluation on the validation set 

• AP in [0; 25%): 582 detectors 

 

 

• AP in [25%; 50%]: 338 detectors 

 

 

 
• AP in (50%; 100%]: 80 detectors 



Best Detector (86.6% AP) 
Strongly defined, unique shape 



DPM Problems 

• HOG models are not appropriate for certain classes 

– large variability in shape (e.g. reptiles) 



DPM Problems 

• Ambiguity between structurally similar classes 

– similar shape, but different appearance (e.g. fruit, dog breeds) 
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Applying DPM at Large Scale 

• DPMs can provide good bbox predictions, but too slow 

– 1K classes x 100K test images = 100M sliding window runs 

• Use classification to drive detection → speed-up 

– classification recall is quite high (90.7% at top 5%) 

– object detection on top 5000 (5%) images of each class 

image 
classification 

object 
detection 

top 5000 
images 

for each class 



Bounding Box Proposals 

• Top DPM detections are used as proposals 

– top 2 bboxes used in this submission 

• Proposals are scored using more complex models 

– affordable for a few boxes 

image 
classification 

object 
detection 

top 5000 
images 

object-level 
classification 

top 2  
bboxes for image 

for each class 



Object-Level Classification 

• High-dimensional model 

– linear SVM with features as in image classification:  
DSIFT-FV & Color-FV (270K-dim.) 

– accounts for bbox-level texture & color cues 

• Training set 

– training set positives 

– ⅓ of validation negatives (top 2 bboxes for each image) 

SIFT FV 

Colour FV 

bbox 
score 

linear 
SVM 



Scores Fusion 

• Three scores are fused into a single one 

– fused score corresponds to object class and bbox 
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Scores Fusion 

• Three scores are fused into a single one 

– fused score corresponds to object class and bbox 

• Top 5 classes with bboxes determined by ranking on the 
(calibrated) fused scores 

– each image is in top 5000 of ≥ 10 classes, so top 5 is feasible 

image 
classification 

object 
detection 

top 5000 
images 

object-level 
classification 

top 2  
bboxes for image 

scores 
fusion 

scores scores scores 

top 5 (class, bbox)  
for each class 

final results 



Scores Fusion: Learning 

• Three complementary cues: 

– image-level classification score (dense SIFT & color) 

– object-level DPM score (HOG local shape information) 

– object-level classification score (dense SIFT & color) 

• Fusion using linear combination of 3 scores 

– weights trained on the validation set using linear SVM 

 
image 

classification 
object 

detection 
object-level 
classification 

scores 
fusion 

scores scores scores 



Is Fusion Helpful for Classification? 

• It helps if objects occupy a small area and can be detected well 

 

 

 

 

• It doesn't help if objects occupy the whole image 
– we use the same features 

+25% AP 



Is Fusion Helpful for Detection? 

• What confuses DPM can be less ambiguous for fine-
level classification 

left: best bbox according to DPM; right: best bbox after scores fusion 



Classification: Comparison 

Submission Method Error rate 

SuperVision DBN 0.16422 

ISI FV: SIFT, LBP, GIST, CSIFT 0.26172 

OXFORD_VGG 
fusion of classification 

& detection 
0.26979 

XRCE/INRIA 
FV: SIFT and colour 

1M-dim features 
0.27058 

OXFORD_VGG 
classification only 

FV: SIFT and colour 
270K-dim features 

0.27302 

• Slight improvement in classification accuracy 

• Classification is already doing well for its class of 
methods 

0.3% 



Detection: Comparison 

Submission Method Error rate 

SuperVision DBN 0.341905 

OXFORD_VGG 
fusion of classification 

& detection, 
2 DPM bbox proposals 

0.500342 

OXFORD_VGG 
fusion of classification 

& detection, 
1 DPM bbox proposal 

0.522189 

OXFORD_VGG 
baseline: detection of 
top-5 classes based on 

classification 
0.529482 

• Fusion brings a noticeable improvement compared to 
the baseline 

• Using more proposals (2 vs 1) gives better results 

2.9% 



Proposal Generation Approaches 

• Class-dependent bbox proposals 

– 2 proposals for (class, image) → ~100 proposals/image 

– requires training 

– quality depends on the learned model 

• Class-independent bbox proposals, e.g. "selective 
search" [1] 

– higher number of proposals (~1500 proposals/image) 

– makes very generic assumptions of object appearance 
• colour/texture uniformity 

• Might complement each other 

[1] van de Sande et al.: "Segmentation As Selective Search for Object Recognition", ICCV 2011 



Summary 

• Our framework allows for  

– high-quality class-specific bbox proposals (using DPM) 
• works well for classes with well-defined shapes 

– computationally complex features (FV) for bbox scoring 
• combination of various visual cues 

• Future work 

– improve detection for classes with weakly-defined shapes 

– better low-level features 


